Fish farming supplies supplier with Wolize: To get to know this integrated approach, the first step is to see the behavior of parasites in flowing water. Almost all parasites that cause severe production losses in aquaculture, including Ichthyophthirius multifiliis, Trichodina, Amyluodinium and monogeneans of genera such as Dactylogyrus and Gyrodactylus, have free-swimming larvae or trophont stages that can move temporarily on their own (Buchmann, 2022). These infective stages depend on hydrodynamic forces to spread between tanks. In a connected water system, tomites, theronts and oncomiracidia are blown downstream by the currents and are transported because of sharing drainage lines, distribution manifolds, head tanks, and intermediate waterways, significantly amplifying the transmission potential (FAO, 2024). As they drift, they encounter new hosts at a much higher frequency than they would in stagnant water, allowing populations to expand even when clinical symptoms remain undetectable. Research from freshwater and marine aquaculture systems consistently shows that flowing water accelerates the spread of nearly all protozoan, monogenean, and crustacean parasites (Buchmann, 2022). Without intervention, parasites rapidly establish cyclical reinfection loops, increasing the likelihood of chronic gill irritation, reduced feed uptake, compromised immunity, and elevated mortality.
The significant increase in unit output efficiency greatly enhances economic benefits. Traditional pond farming has a low density, with an average yield of only a few hundred kilograms per mu, and is limited by land area in terms of large-scale expansion. RAS systems can increase space utilization through three-dimensional farming and multi-layer layouts, with a farming density 5 to 10 times higher than that of ponds, and an equivalent yield of several thousand kilograms per mu. At the same time, precise feeding and stable environmental conditions reduce feed waste and disease losses, increasing the feed conversion rate by 15% to 25% compared to traditional methods, significantly reducing the production cost per unit product. Export potential will expand as West African producers meet global standards for quality and sustainability, tapping into European and global markets hungry for responsibly sourced seafood.
Flow-rate optimization involves eliminating parasites prior to infection whereas ultraviolet sterilization ensures that they do not even enter the system. The UV-C light, usually with the wavelength of 254 nm, alters and breaks the nucleic acid in microorganisms, inhibiting the replication of a species(González et al., 2023). Properly used, UV-C destroys more than 99 percent of free-moving parasite larvae, protozoan stages, zooplankton, as well as bacterial pathogens. Research has shown that doses of 30 to 120 mJ/cm² are neutral to a broad spectrum of aquaculture parasites (Fernández-Boo et al., 2021). Sensitive organisms, like Ichthyophthirius tomites, can be activated by low-levels as low as 25 mJ of energy, and more resistant organisms such as some marine protozoans such as Amyluodinium ocellatum could survive as many as 105 mJ (RK2, 2025). UV sterilization then appears as a necessary preventative that will stop parasitic and microbial pollution in flowing aquaculture systems.
The development prospects of flow-through aquaculture systems remain very broad. In terms of technological innovation, with continuous advancements in science and technology, new materials, equipment, and technologies will constantly emerge, providing strong support for the upgrading of flow-through aquaculture systems. The application of intelligent equipment will become more widespread, enabling comprehensive real-time monitoring and precise control of the aquaculture environment through sensors, the Internet of Things, and big data technologies. Intelligent feeding systems can automatically adjust the amount and timing of feed based on the growth status and feeding needs of the fish, improving feed utilization and reducing waste. Intelligent water quality monitoring and control systems can promptly detect changes in water quality and automatically activate corresponding treatment equipment to ensure that the water quality is always at its optimal state. This not only improves aquaculture efficiency and product quality but also further reduces labor costs and management difficulty. Find even more details on fish farm equipment manufacturer.
In the 1980s, with the initial development of biological filtration technology, land-based recirculating aquaculture systems (RAS) made significant progress. People gradually recognized the crucial role of microorganisms in water purification, and facilities such as biofilters began to be applied to aquaculture systems, more effectively removing harmful substances such as ammonia nitrogen from the water and improving the quality and stability of the aquaculture water. Simultaneously, automated control technology began to emerge in the aquaculture field. Some simple automated equipment, such as timed feeding devices and automatic control systems for aerators, were introduced, initially achieving automation in some aquaculture processes and reducing manual labor intensity. During this period, the variety of farmed species gradually increased. In addition to traditional commercial fish, some shrimp and shellfish also began to adopt RAS models, and the scale of aquaculture expanded, gradually forming a certain industrial scale in Europe and America.
A Recirculating Aquaculture System (RAS) is a high-density aquaculture technology conducted in a controlled environment. Its core principle involves continuously recycling water from the culture tanks through a series of physical, biological, and chemical filtration units, requiring only minimal replenishment to compensate for water lost through evaporation and waste discharge. RAS enables precise control over key parameters such as water temperature, dissolved oxygen, pH, and ammonia, thereby freeing aquaculture from the traditional constraints of being reliant on natural conditions. In contrast, traditional aquaculture in Africa is constrained by several major factors: Water Scarcity and Uncertainty: Large parts of Africa are arid and receive low rainfall, with seasonal rivers frequently drying up. Traditional pond aquaculture is highly vulnerable to climate shocks. Land Resource Competition: Fertile, flat land with good water access suitable for constructing ponds is often also prime land competed for by agriculture and human settlement. Environmental Pollution Risk: Wastewater discharge from open culture systems can lead to eutrophication of surrounding water bodies, causing ecological issues. Disease and Pest Infestation: Exchange with external water bodies makes fish stocks highly susceptible to pathogen outbreaks, leading to significant economic losses. Geographical Limitations: Landlocked countries face extremely high costs in developing mariculture, making it difficult to access high-value seafood products.